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Background and motivation

• LANL’s D-Wave has a relatively small number (1095) of 
qubits
– Problem sizes restricted to ~1000 variables

• Only a small fraction of these qubits are typically used 
because of the penalties
– Example: Max Clique

Constraint: 

Penalty: 

– Results in a dense QUBO matrix, regardless of input graph
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Solving bigger problems

• Because of dense QUBOs, sizes fitting DW even smaller
– Chimera can embed complete graphs of ~45 vertices
– More than 95% of qubits used for connections

• Can use decomposition to solve bigger problems, but
– Issue: # subproblems may grow as 

– No quantum advantage if subprob_size ≤ 300

• Fit-size for dense problems grows only as #𝑞𝑢𝑏𝑖𝑡𝑠�

– Hardware upgrades will not resolve issue soon

• The solution: increase the size of problems directly 
fitting D-Wave

exp

⇣
prob size

subprob size

⌘



Slide 4U N C L A S S I F I E D

Objectives

• Develop methods that allow larger problems to fit into 
D-Wave

• Work on level of QUBO matrix
– Hence problem independent
– Same method can be used for solving different problems

• Two approaches:
– Remove entire rows and columns from the QUBO matrix
– Remove (set to zero) individual elements of the matrix

• Second approach (not discussed today):
– Use spectral sparsification theory
– Guarantees that resulting matrix approximates the original one 

within a user specified accuracy



Slide 5U N C L A S S I F I E D

Roof duality and persistency

• Roof duality
– Technique for computing lower bounds for quadratic forms
– Based on theoretical work from 1980s
– Recently used in computer vision
– Converts quadratic form into quadratic posiform

§ Posiform example:
– Posiform analysis can be used to deduce persistencies 

• Persistency
– Strong/weak persistency: valid for all/some optimal assignments 

§ Example strong: 𝑥# = 0, 𝑥3 = 1 for all optimal assignments
§ Example weak: 𝑥$ = 1, 𝑥& = 0 in some optimal assignment

f(x1, x2, x3) = �2 + 0.5x̄2 + x̄1x2 + x2x3 + 2x̄1x̄3
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Discovering persistencies

• Algorithm outline
i. Convert QUBO matrix into a posiform

ii. Convert posiform into a graph

iii. Solve maxflow problem on graph

iv. Analyze results to discover persistencies

• Implementation: adapted software from
– QPBO (C.Rother, V. Kolmogorov, V. Lempitsky, M. Szummer)

– pyqpbo (A. Mueller)
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Illustration of method

• Input graph
– Find a maximum clique

• Construct QUBO

• Analyze for persistencies
[-1 -1 -1 -1 1 1 0 -1 0 -1]

• Simplify problem

-1 2 2 0 0 0 0 0 0 2
2 -1 0 2 0 0 0 2 2 0
2 0 -1 0 0 0 0 2 2 2
0 2 0 -1 0 0 0 2 0 2
0 0 0 0 -1 0 0 0 2 0
0 0 0 0 0 -1 2 0 0 0
0 0 0 0 0 2 -1 0 2 2
0 2 2 2 0 0 0 -1 0 0
0 2 2 0 2 0 2 0 -1 2
2 0 2 2 0 0 2 0 2 -1

1 0

0

1
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Experimental setup

• Goals: determine:
– What features affect method’s effectiveness
– If combining with decomposition methods has synergetic effect
– If problem formulation matters

• Optimization problems
– Maximum Clique
– Maximum Cut

• Test instances
– C-fat rings – regular, sparse
– Hamming graphs – regular, dense
– Random – no structure
– Geometric – geometric structure
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Persistencies for Max Clique

Name Vertices/
Variables Edges QUBO

density
Clique

size Persistencies

C_FAT_200_1 200 1534 92.29% 12 100%
C_FAT_200_5 200 8473 57.42% 58 100%
C_FAT_500_1 500 4459 96.43% 14 0%
C_FAT_500_5 500 23191 81.47% 64 0%
HAM_6_2 64 1824 9.52% 32 100%
HAM_6_4 64 704 65.08% 4 0%
HAM_8_2 256 31616 3,14% 128 100%
HAM_8_4 256 20864 36.08% 16 0%
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Adding random edges

• Start with a graph with no persistencies
• Add increasing number of random edges
• See how the # persistencies change
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Removing random edges

• Start with a graph with 100% weak persistencies
• Add/remove increasing number of random edges
• See how the # persistencies change
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Combining with decomposition algorithms

• Use the the most general of the 
algorithms that removes 
one vertex at each iteration

• Combine with persistency 
algorithm
– Upto 60% reduction in number

of subproblems
– Probably could do even better
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Comparing different formulations

• Do formulations matter for # of persistent variables?
• If they do, one can look for more favorable ones
• Maximum clique problem

– “independent set” formulation

– “edge-counting” formulation, assumes MC size 𝐾 is known

H = �
X

v2V

xv + 2
X

(u,v)2E

xuxv,

HK = (K + 1)

 
K �

X

v2V

xv

!2

+

2

4K(K � 1)

2
�

X

(u,v)2E

xuxv

3

5



Slide 14U N C L A S S I F I E D

Results

• Comparison of the two formulations
• Graphs used are from the C-fat  family
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Maximum cut problem

• The problem
– The vertices of the graph have to be divided into two sets
– The cut is the set of cross edges
– The size or the weight of the cut has to be maximized
– Equivalent to the minimum cut problem with real weights

• D-Wave formulation
– Ising

– QUBO

Q(x) =
X

(uv)2E

(xu(1� xv) + (1� xu)xv) , xu 2 {0, 1}

Is(x) =
X

(uv)2E

xuxv, xu 2 {�1, 1}
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Experimental results for Max Cut

n p persistencies

500 2.50 13.40

R graphs 500 5.00 100.00

(random) 1000 2.50 11.40

1000 5.00 100.00

500 5.00 1.60

G graphs 500 10.00 0.40

(geometric) 1000 5.00 2.70

1000 10.00 0.00
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Conclusions

• Need ability to fit larger problems into D-Wave in order to see a 
quantum advantage any time soon

• Persistency-based methods 
– Good candidates to reduce the sizes of QUBOs
– General methods, can be applied to any problem
– Early results, much more work needed

• Performance varies significantly even between very similar 
problems

• Combination with decomposition methods can reduce the number of 
problems by upto 60%

• Choosing the right formulation can have huge impact on 
effectiveness
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Future work

• Adapt algorithms to better work for combinatorial problems
– Current implementations target computer vision applications

• Exploit knowledge of the particular optimization problem 
solved
– Currently information only from QUBO matrix used

• Characterize problems/formulations/inputs for which the 
method works better
– Most optimization problems have multiple formulations

• Combine with other methods to increase effectiveness
– Small changes to matrix can result in many new persistencies


